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Susceptibility of Young Sheep to Oral Infection with Bovine
Spongiform Encephalopathy Decreases Significantly after Weaning
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Bovine spongiform encephalopathy (BSE) is a transmissible spongiform encephalopathy (TSE) (or prion disease) that is readily
transmissible to sheep by experimental infection and has the shortest incubation period in animals with the ARQ/ARQ PRNP
genotype (at codons 136, 154, and 171). Because it is possible that sheep in the United Kingdom could have been infected with
BSE by being fed contaminated meat and bone meal supplements at the same time as cattle, there is considerable interest in the
responses of sheep to BSE inoculation. Epidemiological evidence suggests that very young individuals are more susceptible to
TSE infection; however, this has never been properly tested in sheep. In the present study, low doses of BSE were fed to lambs of
arange of ages (~24 h, 2 to 3 weeks, 3 months, and 6 months) and adult sheep. The incidence of clinical BSE disease after inocu-
lation was high in unweaned lambs (~24 h and 2 to 3 weeks old) but much lower in older weaned animals The incubation period
was also found to be influenced by the genotype at codon 141 of the PRNP gene, as lambs that were LF heterozygotes had a longer
mean incubation period than those that were homozygotes of either type. The results suggest that sheep in the United Kingdom
would have been at high risk of BSE infection only if neonatal animals had inadvertently ingested contaminated supplementary

foodstuffs.

ransmissible spongiform encephalopathies (TSEs) are prion

diseases that affect many mammals and are associated with the
presence of the protein PrP°, a protease-resistant form of a nor-
mal host protein, PrP“. PrP is believed to form all or part of the
infectious agent (44). The natural sheep TSE is scrapie; however,
sheep can also be experimentally infected with bovine spongiform
encephalopathy (BSE) by several routes, including intracerebral,
oral (17), and intravenous (28). The manifestation of clinical signs
of BSE following inoculation depends upon a number of factors,
the most important being the PRNP genotype. In the Neuro-
pathogenesis Unit, Edinburgh, United Kingdom (NPU), Cheviot
sheep, animals homozygous for the ARQ PRNP gene allele
(codons 136, 154, and 171 indicated in order) are most susceptible
(23). However, for reasons that are currently unknown, a various
number of adult ARQ/ARQ sheep will survive a challenge with
BSE (16). Understanding this aspect of resistance is of fundamen-
tal importance. One potential influence on disease outcome fol-
lowing infection with any TSE is the age at which the individual is
challenged. Because of the etiology of scrapie, which suggests that
in sheep the risk for infection is very high during the perinatal
period, many sheep challenge studies, including the study de-
scribed in reference 3, have used young lambs rather than adult
sheep as infection models. In addition, epidemiological studies in
cattle (15) have suggested that in general, younger individuals are
more susceptible to infection with BSE, and studies in human
beings have shown that more individuals at relatively young ages
have been affected by variant Creutzfeldt-Jakob disease (vCJD)
(caused by a zoonotic infection with BSE) than by sporadic CJD
(6). No systematic time course study in sheep has previously been
reported in which the age at infection has varied within a single
controlled experiment to demonstrate definitively whether sus-
ceptibility of sheep to any TSE changes with age.

At the time that this study was set up (2001), there was consid-
erable concern about whether BSE might infect (or already has
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infected) the United Kingdom sheep flock. In the 10 years that it
took to complete our study, surveillance programs have searched
in the United Kingdom and throughout Europe for evidence of
BSE in small ruminants. BSE-like signs have not been found in
sheep but have been reported in very few instances in goats (31).
However, it was not possible to rule out BSE completely with the
use of these negative and low figures, so several attempts have been
made to estimate the maximum possible numbers of cases. In one
study in Britain the estimated maximum proportion of sheep TSE
cases that could have been BSE was 0.66% (53). In a European
study the estimated maximum numbers of BSE cases entering the
human food chain in 2009 (95% confidence) were 0 to 240 sheep
(of >57 million slaughtered) and 0 to 381 goats (of >7 million
slaughtered) (14). In the present study, if we were able to show
that any particular age group of sheep was at higher risk of BSE
infection, then taking into account current feeding practices we
could also consider whether infection of the United Kingdom
sheep flock was likely to have occurred.

The objective of this project was therefore to challenge sheep of
different ages with BSE in a range of relatively low doses and to
establish at which age the animals were most likely to become
infected and go on to develop clinical BSE.

MATERIALS AND METHODS

Sheep. Cheviot sheep of the ARQ/ARQ genotype were sourced from the
Defra flock of New Zealand (scrapie-free) origin (27) and were housed
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indoors in concrete pens in the sheep unit at The Institute for Animal
Health, Compton, United Kingdom. Prior to arrival at Compton, some
ewes were implanted with ARQ/ARQ embryos so that the resulting lambs
could be inoculated soon after birth. The study involved sheep of various
age groups: two groups of suckling lambs (~24 h and 2 to 3 weeks of age),
weaned lambs (3 months of age), young adults (6 months of age), and
adults (15 to 27 months of age).

Following inoculation (see below) sheep were transferred into tempo-
rary pens for around 4 weeks and then moved to different group pens for
life span observation. This separation was performed in order to minimize
the chances of cross-infection from any inoculum passing through intact
in the feces. All animals were monitored on a daily basis and were hu-
manely culled when TSE clinical signs developed. Intercurrent illness af-
fected a small number of sheep, which were culled for welfare reasons, and
the experiment was terminated when survivors reached more than 2,000
days (5.5 years) after challenge. All work was reviewed and approved by
the local ethical review committee and performed under license from the
United Kingdom Home Office.

BSE inoculation. Sheep were orally dosed with various amounts of
BSE-infected cattle brain (provided by the TSE Archive, Veterinary Lab-
oratories Agency [VLA]) through the intrabuccal route, which is known
to have been successfully used with adult sheep (16). A full-titration assay
of the BSE homogenate was carried out in RIII mice, producing a titer of
107 infectious units per g, which is comparable with BSE sources used in
our other experiments (16). Sheep (7 to 12 per age and dose group) were
challenged with low doses of BSE cattle brain. Each age group had 3 dose
groups in which each animal received a dose 0f 0.05 g, 0.5 g, or 1 g, and the
lambs in the 24-h age group had an additional dose group that received 0.1
g. The aim was to deliver the same numbers of infectious units per animal
in each dose group. The inocula were prepared from the same batch of
BSE-infected brain macerate by homogenization and dilution in sterile
phosphate-buffered saline according to the required dose. Each sheep
received the dose by intrabuccal administration in a total volume of 2.5 ml
or 5 ml, depending on the dilution factor required, and these volumes
were tolerated by both the adult sheep and the very young lambs. Control
sheep (9 to 11 per age group) were age matched to the infected sheep, and
each received 0.5 g of normal cow brain (also sourced from VLA). Con-
trols were culled throughout in order to provide samples that were ap-
proximately age matched to those of the clinical cases.

Confirmation of BSE clinical disease. A range of central nervous sys-
tem and lymphoid tissues were recovered from all sheep in the study,
including from animals that died. Tissue samples were fixed in neutral
buffered formalin or frozen immediately on dry ice and then transferred
to storage at —70°C. Immunohistochemical testing with the BG4 anti-PrP
antibody was performed on brain, spleen, and tonsil tissues and a range of
lymph nodes (mesenteric, retropharyngeal, prescapular) (18) to confirm
clinical BSE disease. Western blotting was carried out with the 6H4 anti-
PrP antibody on a selection of brain extracts (including control tissues) to
confirm the presence of PrP%° with the glycoform pattern expected with
BSE (36).

PRNP gene sequencing. PRNP genotyping was performed on PCR-
amplified DNA fragments generated from genomic DNA, which was ex-
tracted from tissue samples collected during the postmortem procedure.
Small pieces of tissue (=1 mg) were digested with 7 mg/ml proteinase K
(Qiagen, United Kingdom) in 600 wl buffer (0.34% SDS, 0.34 mM EDTA,
3.4 mM Tris [pH 8.0], 0.1 M Na acetate, 0.33 X phosphate-buffered saline
[PBS]) at 37°C for 1 to 5 h or overnight. Protein was then removed by
standard phenol-chloroform extraction. PCR amplification of isolated
DNA (50 to 100 ng) was performed with Sigma JumpStart REDTaq DNA
polymerase and buffers, 200 wM (each) deoxynucleoside triphosphates
(ANTPs) (Roche, Switzerland), and 0.4 WM each of the oligonucleotide
primers PS-141d (GGAATGTGAAGAACATTTATGACCTAGAAT) and
PS + 109u (CAAGAGAGAAGCAAGAAATGAGACA). PCR conditions
were 3 min at 95°C followed by 40 cycles of 30 s at 95°C, 30 s at 61°C, and
1 min at 72°C and a final elongation step of 10 min at 72°C. Purified PCR
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fragments (in a volume of 1 to 3 l) were sequenced using oligonucleotide
PS + 50u (CCCCCAACCTGGCAAAGATTAAGA) and a BigDye Termi-
nator v3.1 cycle-sequencing kit. Purified reactions were run on an Applied
Biosystems 3130 genetic analyzer (Applied Biosystems).

Data analysis. The data on incubation period (time between inocula-
tion and culling due to BSE clinical signs) were analyzed by survival anal-
yses based on Cox’s proportional hazards model ignoring interval censor-
ing. Data from animals that survived to the end of the experiment or were
culled due to reasons unrelated to BSE were treated as censored data. The
Efron approximation was used to handle ties when the partial likelihood
was calculated. The proportions of clinical cases were analyzed with a
generalized linear model framework fitted with the assumption of Ber-
noulli distributions for the proportion of clinical cases with a logit link
function. These analyses were carried out using R software version 2.13.1.
Genotype information at PrP codon 141 was analyzed using GraphPad
Prism on a subset of the data.

RESULTS

Incidence of BSE in the sheep groups. The outcome following
oral challenge of sheep with low doses of BSE is presented in Table
1. The presence of TSE was confirmed, or ruled out, by immuno-
histochemical detection of disease-associated PrP (PrP*) in brain
and lymphoid tissue from all sheep that showed clinical signs of
disease or had to be culled/died for intercurrent reasons. The ex-
periment was terminated when survivors reached at least 2,000
days postinoculation (dpi). There were differences in the numbers
of animals developing clinical signs, confirmed by immunohisto-
chemical testing, in each age group. In the ~24-h and the 2- to
3-week age challenge groups there were high numbers of BSE
cases, and there was just one survivor to over 2,000 dpi in the 2- to
3-week 0.5-g group. The incubation periods ranged widely, with
large standard deviations (SD), and there was no link with the
dose of BSE.

The remaining age groups (challenged at 3 months to adult
age) had much lower BSE incidences, with for example the
3-month group having no confirmed BSE-affected sheep and 60
to 80% of challenged animals having a survival period of >2,000
dpi. The 6-month age group had seven cases of BSE, fourin the 1-g
dose group and three in the 0.5-g dose group, but again 50 to 60%
of the animals challenged at 6 months of age had a survival period
of >2,000 dpi. In the adult group there was one case of BSE in the
0.05-g dose group and there were two cases in the 0.5-g dose
group. The adult 1-g dose group had one animal with a clinical
BSE case at 930 dpi and one additional animal that despite the
absence of BSE clinical signs had slight PrP*° staining in Peyer’s
patches (PP). The latter sheep was culled at 1,010 dpi for welfare
reasons. Overall in the adult sheep group 70 to 80% of animals
survived to >2,000 dpi. The results show clearly that the two
groups with the youngest lambs (~24 h and 2 to 3 weeks old) had
the highest BSE clinical disease incidence of all age groups, regard-
less of the dosing regimen (Fig. 3A). A number of sheep challenged
orally with normal cow brain were culled at the same times as the
TSE clinically affected sheep, and none showed detectable disease-
associated PrP in either the central nervous system or the periph-
eral lymphoid tissue.

Immunohistochemical testing with the antibody BG4 was car-
ried out on sections taken from various regions of the brain, and
positive cases had PrP%¢ distributed in brain tissues, mostly in the
medulla as described previously (18, 19). Immunohistochemical
testing was also carried out on a range of peripheral lymphoid
tissues. In the majority of cases animals showing positive staining
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TABLE 1 Incubation periods and survival times of sheep orally challenged with BSE at a range of ages

Age at Dose of BSE cases/no. Incubation period Survival of non-BSE sheep” Survival of non-BSE sheep”
challenge BSE (g) challenged (days” [SD]) for <2,000 days (no. if >3) for >2,000 days (no. if >3)
~24h 0.05 8/9 865 (202) 524 NA¢
0.1 4/7 774 (212) 317, 335, 964 NA
0.5 6/11 1,044 (215) 39-672 (n=15) NA
1.0 7/10 685 (164) 9, 135, 150 NA
2-3 wk 0.05 11/12 740 (162) 104 NA
0.5 11/12 949 (189) NA 2,263
1.0 12/12 745 (207) NA NA
3 mo 0.05 0/10 NA 8,193 2,121-2,237 (n = 8)
0.5 0/10 NA 8, 989, 1,890 2,172-2,179 (n =7)
1.0 0/10 NA 217-1,381 (n = 4) 2,143 (n = 6)
6 mo 0.05 0/10 NA 519, 1,273 2,021-2,062 (n = 8)
0.5 3/10 729,742,932 922 2,021-2,062 (n = 6)
1.0 4/10 821 (183) 682 2,062 (n =15)
15-27 mo 0.05 1/10 2,289 1,214, 1,227 2,039-2,290 (n =7)
0.5 2/10 594, 849 1,723 2,191-2,304 (n = 7)
1.0 1/10 930 1,010,%1,359 2,290-2,297 (n =7)

¢ If fewer than four cases, individual incubation periods or survival times are presented (days after infection); the survival rates for four or more animals are given as a range.

b Animals culled for intercurrent illness/welfare reasons or at the end of the experiment.
“NA, not applicable.
4 One animal with PrP>-positive staining in Peyer’s patches with no other BSE signs.

in brain tissue were also positive in lymph nodes (Fig. 1), which
was as expected from our previous pathogenesis studies (19). All
of the negative controls and survivors and all but one animal with
intercurrent death had no signs of PrP*¢ deposition in any tissue.
The exception was the animal with intercurrent death at 1,010 dpi
from the 1-g adult group mentioned above. Western blotting
showed typical BSE-like glycoform profiles of PrP*° (Fig. 2) in
clinical BSE animals only. As expected the proteinase K-treated
PrP* from the ovine BSE brains had a lower molecular weight
for the unglycosylated band than is seen with natural scrapie
(Fig. 2, compare lanes 1 and 2) and a 1-in-3 dilution series
showed the preponderance of the diglycosylated band (Fig. 2,
lanes 2 through 4).

Survival analysis tested the effect of age at challenge on the
development of BSE clinical signs in the sheep. With the use of a
generalized linear model there was no evidence that the dose of
BSE had a significant effect on the mean proportion of clinical

cases in the sheep (P = 0.264), so results were pooled for each age
group (Fig. 3A). The age at challenge had a statistically significant
effect on whether or not the challenged animal developed BSE.
Older sheep (6 months and adult) had significantly lower (p <
0.001) mean hazard ratios (0.09 and 0.04, respectively) relative to
~24-h lambs. The 2- to 3-week lambs were also more likely to
develop BSE than the 6-month and adult groups (p < 0.0001).
Comparison of the ~24-h and 2- to 3-week lamb groups showed
that the mean hazard ratio was not significant between the two
ages (p = 0.712). Similarly for the 6-month challenge groups rel-
ative to adult sheep the mean hazard ratio was not significant (p =
0.266). Since there were no clinical cases in the 3-month challenge
groups, they were compared with the other groups using a gener-
alized linear model, which again showed that the age group had a
statistically significant effect on the mean proportion of BSE cases
(P < 0.001). The main age-related difference in incidence of BSE
was therefore between unweaned (~24-h and 2- to 3-week) ani-

FIG 1 Immunohistochemical staining for PrP*® in BSE-challenged sheep brain and lymph node tissue samples. Immunohistochemical testing using BG4
staining of PrP*“ in tissues of one representative sheep from the ~24-h challenge group and clinically affected by BSE. A, thalamus; B, tonsil. Magnification, X 10.
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FIG 2 Western blot of brain tissue from BSE-challenged sheep brain. Western
blot using 6H4 showing proteinase K-treated PrP* in brain tissue from a
representative clinically affected sheep challenged with BSE at 6 months of age.
Size markers (M), natural scrapie control (1), sheep BSE (2), sheep BSE diluted

1/3 (3), and sheep BSE diluted 1/9 (4). This is a single gel with an irrelevant lane
blanked out using Photoshop CS5. No other changes were made.

3

mals with high susceptibility and weaned (3-month, 6-month,
and adult) animals with much lower susceptibility.

PRNP gene sequence. When the challenge groups were set up
in 2001, in ARQ/ARQ sheep, no account was taken of genotype at
any other PRNP gene codon as we were not at that time aware of
any additional associations with disease. DNA sequencing was
carried out on alimited number (n = 68) of the sheep in this study
in order to establish if polymorphisms at PRNP gene codons other
than the standard three (136, 154, and 171) might be linked to the
observed differences in susceptibility. No other codons were
found to be variable apart from those corresponding to L141F and
P168L. All sheep were homozygously P4 apart from one single
animal that was PL,4s. The latter sheep, which was mentioned
above and was from the adult 1-g challenge group, was culled with
intercurrent illness at 1,010 dpi and found to have slight PrPSc
detectable in Peyer’s patch tissue. However, the L141F polymor-
phism was found at high frequency throughout all groups, and
incubation periods of BSE in the different age groups (for a re-
duced data set of 68 animals) were compared with the PRNP ge-
notype at codon 141. There was no observed effect of dose on
incubation period length (not shown) so the data were pooled for
each genotype, and incubation periods of clinical animals are
shown in Fig. 3B. A significant lengthening of incubation period
was observed in 141-LF animals compared with 141-LL and
141-FF sheep (P < 0.001). The mean incubation period for LL (n
= 15) was 605 days, SD 56; for FF (n = 28) 774 days, SD 166; and
for LF (n = 24) 1,013 days, SD 138. There was no link with resis-
tance, as 12 survivors were also genotyped mostly from the
3-month challenge group and were as follows: LL (n = 1) survival
time, 2,143 days; FF (n = 4) survival times, 1,214, 1,359, 1,723,
and 2,143 days; and LF (n = 7) survival times, 1,010 (the animal
which was also PL, 4 and PrP*° positive in Peyer’s patches only),
1,227, and 2,143 (five animals) days.

DISCUSSION

In our study of sheep challenged orally at a range of ages with low
doses of BSE, we have found clear evidence that neonatal lambs are
much more susceptible than weaned lambs and adults. In our
previous studies we used a dose of 5 g of cattle BSE brain per
(adult) sheep and this resulted in clinical disease at an average
incubation period of around 800 days (16). The 5-g dose, or even
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groups challenged with BSE; (B) sheep of different PRNP genotypes (codon
141) challenged with BSE.

larger amounts, has become the normal oral dose when clinical
disease is required for pathogenesis studies in our own and other
labs (3, 47, 52, 59). In the present study, the lower doses (ranging
from 0.1 gto 1 g per animal) were chosen such that the sheep in the
adult group would not all become clinically affected by BSE. In
order to demonstrate clearly any higher susceptibility in the
younger age groups. Smaller amounts were also thought to more
accurately reflect levels of dietary sources of BSE that may theo-
retically have affected United Kingdom sheep. Our results dem-
onstrate clearly that the ~24-h and 2- to 3-week-old lambs were
much more likely to develop BSE after oral challenge than older
sheep (3 months, 6 months, and adult). The BSE incubation pe-
riod did not alter with the doses used, but there was an association
of codon 141 with the length of the incubation period in that
animals of the ARQ/ARQ genotype had the shortest incubation
periods if they were also LL,,,, longer if FF,,,, and longer still if
LF,,;. New Zealand Cheviot sheep have a polymorphism at codon
168 that has been associated with BSE resistance (22), and codon
112 has been shown in other sheep also to be associated with
differences in BSE (47). However, in the sheep in the present
study, codons 168 and 112 did not vary, except in one single ani-
mal that was PL, 4, and no additional codon variants were found.
Codon 141 heterozygotes have been shown previously to have low
susceptibility to scrapie (32, 46), but this is the first time an asso-
ciation with oral BSE infection of sheep has been published with
detailed incubation period data, although the observation of lon-
ger survival of LF,,, sheep has been presented in a conference
abstract (54).

There are indications from epidemiological studies that TSEs
are more infectious to younger sheep (12, 38) and cattle (5); how-
ever, there are, to our knowledge, no previously reported similar
studies using direct experimental challenge of sheep to investigate
the relationship of age to TSE susceptibility. Indeed, there are very
few examples of challenge of neonatal ruminants in the literature
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at all. In a very early study, before PrP genetics was elucidated in
sheep, fetal and newborn Suffolk sheep were experimentally in-
fected with scrapie (24). The animals challenged as fetuses showed
signs of infection in tissues at ~250 days of age, and the newborns
survived to 147 to 210 days of age. However, without PrP genotype
information it is difficult to interpret the results. In two more
recent studies, neonatal and 4-month-old ARQ/ARQ lambs were
orally infected with scrapie, following which clinical disease devel-
oped in 100% of the former at 24 months of age (26) and around
50% of the latter at 32 months. However, the study was very lim-
ited and was disjointed, as it was carried out in two separate ex-
periments with a long time gap between them, and no additional
PrP genotype information was reported regarding the ARQ allele
in the challenged animals. There are more published studies of
neonatal infection in mice and hamsters although the information
is also limited and at times contradictory. Neonatal mice have
been reported to be in some instances less likely than weaned
young mice to develop scrapie following challenge by intraperito-
neal injection (43), and weaned young hamsters were found to be
more susceptible to intracerebral challenge than adults (40).

There are undoubtedly multiple possible routes that can be
used by TSE infectivity to invade and spread within the body, and
different routes may predominate as others are closed. This makes
it difficult to investigate which particular route has been taken in
any individual experiment; however, it is clear from our results
that the very early stages of life are high-risk periods for sheep to
become infected if exposed to BSE in foodstuffs. The evidence that
neonatal sheep are much more susceptible to BSE infection than
weaned animals warrants further investigation in order to further
our understanding of the epidemiology of BSE and its zoonosis,
with, in the end, the aim of control and prevention of infection of
all TSEs in sheep.

From our results we suggest that there are at least two strong
and testable hypotheses for control of the age-related differences
in initiation of infection. Our first suggestion is that the environ-
ment of the neonatal gut may be more favorable to BSE survival
than that of weaned animals. The rumen in adult sheep contains
billions of microorganisms that aid in the digestion of fibrous
grass and hay. Regurgitation and rechewing of this material pre-
pares the ingested fiber for the subsequent enzymatic and acid
breakdown before moving on into the small intestine. Any in-
gested PrP/infectivity would have to survive this considerably
destructive process prior to crossing the gut wall. There have been
many attempts, with conflicting results, to establish whether PrP5¢
can survive ruminant digestion processes. Some studies have
shown no effect on PrP5 after incubation in rumen, colon, or
ileum fluids (7, 41), and work on BSE in cattle has suggested that
PrP5¢ must survive the passage through much of the, if not the
entire, digestive tract (55). However, without detailed infectivity
bioassay analysis it is difficult to be sure what this means. In con-
trast, many other studies have indicated that PrP*° is readily de-
graded in gut fluids or in gut loop inoculations (11, 30, 48). De-
spite this rather confusing picture, experimentally infected adult
sheep will develop BSE clinical signs after oral dosing, and our
results clearly show that from as little as 0.5 g BSE cattle brain,
sufficient infectivity can be taken up through the gut walls to es-
tablish infection even if much of the PrP* is digested.

Ingestion and digestion of nutrients is very different in young
lambs. A reflex of the esophageal groove allows the suckling lamb
to ingest milk directly into the abomasum, thereby aiding the ab-
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sorption of larger protein molecules. During this phase of devel-
opment, the level of proteolytic activity in the digestive tract is low
and is further reduced by trypsin inhibitors in colostrum (57, 62).
This may mean that ingested PrP*7/infectivity is subjected to
greatly reduced protease action compared with older animals.
Survival of PrP*/infectivity in the digestive fluids of neonatal
lambs has not, to our knowledge, been investigated. It is possible
therefore that before weaning, the lamb gut is a less harsh envi-
ronment, allowing more infectivity to survive than in weaned
lambs. The pH in the abomasum is variable in young ruminants
and after ingestion of milk is very much higher than that in older
animals (10), which may reduce protein digestion and aid absorp-
tion of colostral immunoglobulin. The effects of gut conditions
can be profound. In one recent study, treatment of mice with
omeprazole (a proton pump inhibitor) had the effect of increasing
gastric fluid pH from 1.2 to 5.3 and more than doubled the rate of
disease in intragastric scrapie infection compared with controls
with normal gastric pH at infection (37).

Our second hypothesis is that in neonates there is a more effi-
cient mechanism for absorption of macromolecules (and there-
fore also potentially PrP/infectivity) through the gut wall than in
older animals. There are several different mechanisms for uptake
of macromolecules from the gut, and it is possible that any one, or
all, of these could be exploited to establish infection. In neonates
these processes, which differ in detail between rodents and rumi-
nants, can be broadly divided into those involved in transfer of
maternal immunoglobulins to the newborn and those involved in
general uptake of macromolecules through M cells and/or villous
epithelium. Neonatal mice have an Fc receptor on gut enterocyte
membranes that recognizes milk IgG and facilitates its selective
transcytosis across the mucosa to the submucosa and then into the
blood (58). The process ceases abruptly at or before weaning (21),
when IgG receptors disappear. In contrast, in very young sheep,
maternal immunoglobulins plus macromolecules and lympho-
cytes from colostrum are transferred by a nonselective process of
enterocyte pinocytosis across the gut to the bloodstream and then
to the lambs’ lymph nodes (39, 56), a mechanism that terminates
by approximately 48 h after birth. Although uptake of PrP>*/in-
fectivity could occur via this route, it has not been tested by exper-
imentation, nor does it explain the high susceptibility of our 2- to
3-week age group, in which it should have ceased to act.

In studies of general uptake mechanisms from the gut in older
animals, experiments suggest that Peyer’s patches (PP) are impor-
tant routes of entry of PrP*/infectivity. Ileal PP are among the first
tissues that stain positive for PrP in studies of sheep affected by
natural scrapie and within experimental studies of BSE and
scrapie (2, 59, 60). The amount of gut-associated lymphoid tissues
(GALT), and in particular PP, decreases at a variable rate as the
animal matures, so that in the adult sheep it is much reduced.
After around 2 to 3 months of age, ileal PP undergo progressive
involution, and by ~15 months the organized lymphoid elements
of the terminal ileum have almost completely regressed (35, 45, 50,
51); however, the process is so gradual, taking place over many
months, that it is unlikely to be the main factor controlling the
sudden drop in disease transmission seen between the group chal-
lenged at 2 to 3 weeks of age and that challenged at 3 months.

Within PPs there is compelling evidence in mice that supports
M cells as the route of entry; for example, transgenic mice in which
the M cells had been depleted were found to be resistant to scrapie
infection (13). We are not aware of any published detailed de-
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scription of M cell development in sheep neonates, and this is
clearly necessary before M cells can be reliably associated with the
high susceptibility seen in this age group. However, in a study of
infection of gut loops in live sheep, an additional M-cell-indepen-
dent route of entry has been implicated. Villous columnar epithe-
lial cells in the mucosa of the ileum of adult sheep were seen to
incorporate PrP*¢ early in the infection process, well before M-
cell-associated uptake (30). It is also known from work in rodents
and humans that small but significant amounts of macromole-
cules are absorbed through gut mucosa and can remain intact in
adults, as it is possible to demonstrate the presence in blood of
active forms of proteins ingested from the gut, for example, pro-
teases (33) and horseradish peroxidase (61). Itis not clear whether
the efficiency of this process is greater in younger sheep; however,
it does seem to be in young cattle (4) and mice (42), and a recent
elegant study in sheep may provide details of a mechanism. Use of
in vivo gut loop inoculation of lambs of 7 to 32 days of age with a
full-length recombinant PrP polypeptide molecule (rPrP) impli-
cated macrophages in the uptake of rPrP from the gut lumen and
through the villous epithelium and suggested that this may be how
the nonselective uptake of macromolecules may occur (1). Of
course, a demonstration of uptake does not confirm that the in-
fectious process has been successfully initiated or that clinical dis-
ease will follow as a direct result, but it is possible that prion in-
fection is opportunistic and able to exploit several different
infection routes, some or all of which may be more active
in younger animals. Further studies are needed to assess fully
whether the M cell or mucosal route is the direct cause of the
major change in susceptibility that we have shown for BSE in
neonatal sheep and older animals.

Although our results fit well with the idea that after weaning
the survival of PrP*® and/or uptake from the sheep gut is consid-
erably reduced, there are other factors that may influence infec-
tion initiation and spread. Once PrP*/infectivity has traveled
through the gut wall there are further crucial steps in pathogenesis
that may be both developmentally regulated and rate limiting for
the spread of infection. TSE neuroinvasion occurs in the periphery
and results in dissemination to the brain via autonomic nerves, in
particular parasympathetic and sympathetic efferent nerves pro-
jecting to the gut and thought to be common pathways (59). De-
velopmental studies of the enteric nervous system (8, 20, 49) in
young lambs are rare, but in one reported study (34) the number
of neurons in the myenteric plexus of the rumen of suckling lambs
was found to be 140 = 10 per cm?, whereas in young ruminating
sheep (5 months of age) there were only 10 = 3 per cm” and in
adult sheep, 7 = 2 per cm?. If this is reflected throughout the gut,
the numbers of neurons for the uptake of PrP*/infectivity could
be considerably reduced in weaned sheep compared with new-
borns. Alternatively, once TSE infection is transported across the
gut wall, it could take a route via the lymphoreticular system (LRS)
prior to invasion of the central nervous system. In the LRS the
importance of follicular dendritic cells (FDCs) in the dissemina-
tion of infectivity has been elegantly demonstrated in mice (9, 29).
Lambs, however, have different immune system status from neo-
natal mice and are well endowed with FDCs in their lymphoid
tissues before birth (25), so this is unlikely to be important in our
unweaned sheep.

How do our findings affect the risk analysis for the chances of
BSE having infected the United Kingdom sheep flock? Although in
some systems solid food (creep feed) is introduced to lambs before
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weaning, ingestion of large amounts of solid food (for example,
protein supplements) is more likely to take place during and after
weaning. Sheep should therefore have had considerable protec-
tion against BSE infection as a result of a combination of their
physiological maturation and these husbandry practices. Our re-
sults, which show that risk of infection following exposure to BSE
declines markedly after weaning, may therefore help explain the
surveillance studies (14, 53) that suggest that despite being suscep-
tible to BSE, United Kingdom sheep were actually at low risk of
having been naturally infected with BSE.
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